

Welcome to Stencil’s documentation!

Contents:

	Writing Templates
	Expressions

	Comments

	Variables

	Block Tags

	Using Templates
	From Strings

	From a file

	Context

	Extending stencil
	Filters

	Tags

Why?

There are plenty of template engines in Python, and I’ve even written my own
powerful, super-fast one (knights-templater), so why write another?

I was experimenting with AWS’ Serverless concept, and was saddened to learn it
only supports Python 2.7 currently. I wanted templating, but felt back-porting
K-T to Py2 just wasn’t warranted.

So I figured, why not see how small I can make a functional template language?

Apparently, “under 400 lines of code” is the answer...

Writing Templates

Templates are just plain text files, with special notation (called ‘tags’) to
indicate where the engine should take action.

There are 3 basic types of tags:

	var

	block

	comment

Expressions

At several points in the syntax, an Expression can be used.

They start with a value, optionally followed by a series of filters.

A value can be:

	an integer

	a float

	a string

	a lookup

A lookup will try to delve into the Context. For example the expression
name will look for Context[‘name’].

However, lookups can delve deeper. They will attempt dict lookups, attribute
lookup, and list indexing (in that order). Also, if the resulting value is
callable, it will be called.

So, to get the name attribute of your user object, and call its
title method, the expression would be name:user:title.

Filters allow you to pass the value (and possibly more arguments) to helper
functions. For example, you might have a dollar format function:

def dollar_format(value, currency_symbol='$'):
 return "%s%0.2f" % (currency_symbol, float(value))

Register the filter
stencil.FILTERS['dollar_format'] = dollar_format

You can now in your templates use the expression
product:price|dollar_format, or even override the currency symbol using
product:price|dollar_format:'¥'.

Filters can be chained, one after another.

There are currently no default filters provided with Stencil.

Comments

Comment tags are discarded during parsing, and are only for the benefit of
future template editors. They have no impact on rendering performance.

Variables

Var tags are used to display the values of variables. They look like this:

Hello {{ expr }}

Block Tags

Block tags perform some action, may render some output, and may “contain” other tags.

{% include 'another.html' %}

Built In Tags

for

The for tag allows you to loop over a sequence.

{% for x in expr %}
…
{% endfor %}

The for tag also support and else block. It will be used if sequence
to be iterated is empty.

{% for x in empty_list %}
…
{% else %}
Nothing to show.
{% endfor %}

if

The if tag allows for simple flow control based on a truthy test.

{% if expr %}
Success!
{% endif %}

It also supports negative cases:

{% if not expr %}
Failure!
{% endif %}

And, like the for tag, it supports an else block:

{% if expr %}
Success!
{% else %}
Failure!
{% endif %}

“Truthiness” is based on the Pythocept. Here are some things that are “truthy”:

	True

	non-empty strings

	non-empty lists or dicts

	non-zero values

Conversely, things that are “falsy” are:

	False

	empty strings

	0 and 0.0

	empty lists and dicts

include

The include tag lets you render another template inline, using the current
context.

{% include expr %}

Additionally, you can pass extra expressions to be added to the
context whilst the other template is being rendered.

{% include form_field.html field=current_field %}

load

This tag lets you load other code modules to add new tags to use in this
template. See Tags for more details.

{% load 'myproject.tags' %}

The value passed is a Python import path.

extends and block

The extends tag allows the use of template inheritance. A base template
can denote blocks of content which can be overridden by templates which
extend it.

Caution

The extends tag only works properly if it is the very first thing in
your template.

Say we have the following base template:

<!DOCTYPE html>
<html lan="en">
 <head>
 <title>{% block title %}Welcome!{% endblock %}</title>
 <link rel="stylesheet" type="text/css" href="/static/css/base.css">
 {% block extra_head %}{% endblock %}
 </head>
 <body>
 <header>
 <h1>{% block header %}Welcome!{% endblock %}</h1>
 </header>
 <main>
 {% block content %}{% endblock %}
 </main>
 <footer>
 <p>© 2016 Me!</p>
 </footer>
 {% block footer_scripts %}{% endblock %}
 </body>
</html>

Now, when rendered itself, it will show as:

<!DOCTYPE html>
<html lan="en">
 <head>
 <title>Welcome!</title>
 <link rel="stylesheet" type="text/css" href="/static/css/base.css">

 </head>
 <body>
 <header>
 <h1>Welcome!</h1>
 </header>
 <main>

 </main>
 <footer>
 <p>© 2016 Me!</p>
 </footer>

 </body>
</html>

However, if we write another template which extends this one, we just have to
write now the blocks we want to override:

{% extends base.html %}

{% block title %}My Title!{% endblock %}

{% block content %}
Welcome to my first page!
{% endblock %}

This will override only the two given blocks content.

Any content outside of block tags will be ignored.

with

Using with you can temporarily assign new values in the context from
expressions. This can help avoid repeated work.

{% with url=page|make_url %}
{{ page:title }}
{% endwith %}

case/when

Allows switching between multiple blocks of template depending on the value of
a variable.

{% case foo.bar %}
{% when 1 %}
You got one!
{% when 2 %}
You got two!
{% else %}
You got some!
{% endcase %}

The optional {% else %} clause is used if no when cases match.

Using Templates

To use stencil templates there is very little to do.

From Strings

To build a tempate from a string, just create a stencil.Template instance:

>>> from stencil import Template

>>> t = Template('''Hello, {{name}}!''')

And to render it:

>>> t.render({'name': 'Bob'})
'Hello, Bob!'

From a file

First you’ll need to create a TemplateLoader, passing it a list of paths to
search for templates.

>>> from stencil import TemplateLoader
>>> loader = TemplateLoader(['templates/'])

You can ask it to load a template freshly calling TemplateLoader.load

>>> t = loader.load('base.html')

The TemplateLoader can also cache loaded, parsed templates if you treat it
as a dict:

>>> t = loader['base.html']
Loads template from file.
>>> s = loader['base.html']
Returns the same template instance.

Context

When rendering a template, you need to pass it a Context - this is the
limit of information the template can access.

Custom filters

Filtering functions for applying to values in expressions can be defined in the
globally shared dict stencil.FILTERS.

Extending stencil

Stencil allows you to easily add new tags and filters.

Filters

As noted in Custom filters, you can easily register new filter
functions.

Here is an example of adding an escape filter:

escape_html = lambda text: (
 text.replace('&', '&')
 .replace("<", "<")
 .replace(">", ">")
 .replace('"', """)
 .replace("'", "'")
)

_js_escapes = {
 ord('\\'): '\\u005C',
 ord("'"): '\\u0027',
 ord('"'): '\\u0022',
 ord('>'): '\\u003E',
 ord('<'): '\\u003C',
 ord('&'): '\\u0026',
 ord('='): '\\u003D',
 ord('-'): '\\u002D',
 ord(';'): '\\u003B',
 ord('\u2028'): '\\u2028',
 ord('\u2029'): '\\u2029'
}

Escape every ASCII character with a value less than 32.
_js_escapes.update((ord('%c' % z), '\\u%04X' % z) for z in range(32))

escape_js = lambda text: text.translate(_js_escapes)

def escape(value, mode='html'):
 if mode == 'html':
 return escape_html(value)
 elif mode == 'js':
 return escape_js(value)
 raise ValueError('Invalid escape mode: %r' % mode)

stencil.FILTERS['escape'] = escape

And we use it in our template:

<input type="text" value="{{ value|escape }}">

Now we can use it:

>>> from stencil import TemplateLoader, Context
>>> ctx = Context({'value': '<script>alert("BOO");</script>'})
>>> tmp.render(ctx)
u'<input type="text" value="<script>alert("BOO");</script>">'

Tags

All tags derive from the stencil.BlockNode class, and self-register with
stencil on declaration.

from stencil import BlockNode

class MyTag(BlockNode):
 name = 'my' # This is matched in {% my %}

When stencil finds a tag matching this name, it will call the
BlockNode.parse classmethod, passing it the rest of the tag content, and
the template instance. This method must return a BlockNode sub-class instance.

class MyTag(BlockNode):

 @classmethod
 def parse(cls, content, parser):
 return cls(content)

The default action is to just return an instance of the class, passed the tag
content.

When a template is rendered, a blocks render method will be called, passed
a Context instance, and a file-like object to output to.

Tags with children

Some tags contain child nodes (e.g. for, if, block).

To do this they build a Nodelist:

class MyBlock(BlockNode):

 @classmethod
 def parse(self, content, parser):
 nodelist = parser.parse_nodelist({'endmyblock',})
 return cls(nodelist)

This will consume tags until it reaches one with a name found in the list. The
tags are added to a Nodelist instance, except the matching one which it
stored in Nodelist.endnode.

A Nodelist can be rendered easily by calling their render method, which
works just like a BlockNode.

nodelist.render(context, output)

Expressions

To have an argument resolved as an expression, use the parse_expression
function. This will parse then value passed, and construct an Expression
instance.

Then in render, call Expression.resolve(context) to get its value.

For more fine grained parsing, and to parse key=expr syntax, use a
Tokens class.

tokens = Tokens(content)

This provides several useful methods:

value = tokens.parse_argument()

Parses a single argument, be it a string, float or int literal, or a lookup.
The result is suitable for passing as the second argument to
resolve_lookup, or as the first to Expression.

value = resolve_lookup(value)

value, filters = tokens.parse_filter_expression()

Parse a filter expression, returning a value (as from parse_argument, and a
list of (filter name, *args) tuples.

kwargs = tokens.parse_kwargs()

Parse key=filter-expression sequences, and construct a dict of
key: Expression() items.

tokens.assert_end()

Asserts the current token to be parsed is an end marker, or raises and
assertion error with a message showing where the token was.

Index

 nav.xhtml

 Table of Contents

 		Welcome to Stencil's documentation!

 		Writing Templates

 		Expressions

 		Comments

 		Variables

 		Block Tags

 		Built In Tags

 		Using Templates

 		From Strings

 		From a file

 		Context

 		Custom filters

 		Extending stencil

 		Filters

 		Tags

 		Tags with children

 		Expressions

_static/down.png

_static/up.png

_static/comment-close.png

_static/comment.png

_static/plus.png

_static/down-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/ajax-loader.gif

